Robust Automatic Modulation Classification Technique for Fading Channels via Deep Neural Network

نویسندگان

  • Jung Hwan Lee
  • Jaekyum Kim
  • Byeoungdo Kim
  • Dongweon Yoon
  • Jun Won Choi
چکیده

In this paper, we propose a deep neural network (DNN)-based automatic modulation classification (AMC) for digital communications. While conventional AMC techniques perform well for additive white Gaussian noise (AWGN) channels, classification accuracy degrades for fading channels where the amplitude and phase of channel gain change in time. The key contributions of this paper are in two phases. First, we analyze the effectiveness of a variety of statistical features for AMC task in fading channels. We reveal that the features that are shown to be effective for fading channels are different from those known to be good for AWGN channels. Second, we introduce a new enhanced AMC technique based on DNN method. We use the extensive and diverse set of statistical features found in our study for the DNN-based classifier. The fully connected feedforward network with four hidden layers are trained to classify the modulation class for several fading scenarios. Numerical evaluation shows that the proposed technique offers significant performance gain over the existing AMC methods in fading channels.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dimensionality Reduction and Improving the Performance of Automatic Modulation Classification using Genetic Programming (RESEARCH NOTE)

This paper shows how we can make advantage of using genetic programming in selection of suitable features for automatic modulation recognition. Automatic modulation recognition is one of the essential components of modern receivers. In this regard, selection of suitable features may significantly affect the performance of the process. Simulations were conducted with 5db and 10db SNRs. Test and ...

متن کامل

Modulation Classification Using Spectral Features on Fading Channels

Modulation classification plays a key role in demodulation of the received signal for extracting the required information. Modulation classification is a difficult task when there is no information about the received signal (Blind Classification) and especially in presence of multipath fading and white guassian noise. Emerging applications of automatic modulation classification (AMC) in militar...

متن کامل

Object-Oriented Method for Automatic Extraction of Road from High Resolution Satellite Images

As the information carried in a high spatial resolution image is not represented by single pixels but by meaningful image objects, which include the association of multiple pixels and their mutual relations, the object based method has become one of the most commonly used strategies for the processing of high resolution imagery. This processing comprises two fundamental and critical steps towar...

متن کامل

1 Heterogeneous Deep Model Fusion for Automatic 2 Modulation Classification 3

Deep learning has recently attracted much attention due to its excellent performance in 12 processing audio, image, and video data. However, few studies are devoted to the field of 13 automatic modulation classification (AMC). It is one of the most well-known research topics in 14 communication signal recognition, which remains challenging for traditional methods due to the 15 complex disturban...

متن کامل

An Efficient Hierarchical Modulation based Orthogonal Frequency Division Multiplexing Transmission Scheme for Digital Video Broadcasting

Due to the increase of users the efficient usage of spectrum plays an important role in digital terrestrial television networks. In digital video broadcasting, local and global content are transmitted by single frequency network and multifrequency network respectively. Multifrequency network support transmission of global content and it consumes large spectrum. Similarly local content are well ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Entropy

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2017